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A. Introduction 

Human multipotential and committed he­
matopoietic progenitor cells require the 
presence of specific glycoproteins, termed 
"colony-stimulating factors" (CSFs) for sur­
vival, clonal proliferation, and differenti­
ation. Recently, a pluripotent G-CSF, con­
stitutively produced by the human bladder 
carcinoma line 5637, has been purified to ap­
parent homogeneity [11 and molecularly 
cloned with the complementary DNA copy 
of the gene expressed in Escherichia coli [2]. 
This factor induces terminal differentiation 
of the murine myelomonocytic cell line WE­
HI3B(D +), the human promyelocytic cell 
line HL60, and leukemic cells from patients 
with certain forms of ANLL [2, 3] and has 
been shown to stimulate the growth of day-7 
granulocyte colonies, erythroid bursts 
(BFU-E), and multilineage colonies (CFU­
GEMM) from human bone marrow [1-31. 
Despite its similarity with murine G-CSF [41, 
the latter does not support the proliferation 
of BFU-E and CFU-GEMM [51, biological 
activities shared by murine IL3 and GM­
CSF [6-8]. However, IL3 has not been re­
ported to induce differentiation of leukemic 
cells [9], no significant homology was found 
between the deduced amino acid sequence 
for hG-CSF and those for murine IL3 [10, 
111 and murine and human GM-CSF [12, 
13], and specific binding of radio labeled hG­
CSF was inhibited by an excess of unlabeled 
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hG-CSF but not by hGM-CSF [21. In these 
previous studies, accessory cell-mediated bi­
ological activities and direct effects on pro­
genitor cells were not distinguished. To ad­
dress these considerations, the effects ofhG­
CSF on accessory cell-free bone marrow 
populations highly enriched for hemato­
poietic progenitors were examined. 

B. Methods 

Low-density bone marrow separated by 
Ficoll-Hypaque density centrifugation was 
enriched 10- to 12-fold for progenitor cells 
by depletion of mature myeloid, monocytic, 
lymphoid, and erythroid cells using the 
mAbs Mol, MY8, MY3, N901, B4 (gen­
erously provided by J. Griffin, Boston), 
OKT4, OKT8, OKT11 , and antiglycoph­
orin by immunoadherence "panning" [14, 
15] and complement-mediated cytotoxicity 
(LDAC-). By subsequent fluorescence-acti­
vated cell sorting, a nearly homogeneous 
blast population defined by low perpendicu­
lar and high forward light scatter (blast win­
dow) and expression of the HPCA-l antigen 
(detected by the MY10 mAb), present on all 
hematopoietic progenitors [16], was isolated 
with a purity of 85%-95% and an overall 
plating efficiency of up to 30%. Alterna­
tively to MY10, an anti-HLA-DR mAb 
(clone L243; both Abs a kind gift of N. 
Warner, Becton Dickinson) was used for 
positive selection of clonogenic cells [17]. 
DAD14 (d14) and DA Y7 (d7) CFU-GM, 
BFU-E, and CFU-GEMM were assayed in 
agar and methylcellulose cultures respec-



tively. Erythropoietin (EPO) was added on 
d3 to eliminate background growth of BPA­
independent, EPO-responsive BFU-E [IS]. 
In cultures of MYlO+ and HLA-DR+ 
populations no spontaneous colony forma­
tion was observed. 

C. Results and Discussion 

As shown in Table 1, 100-2000 units of re­
combinant G-CSF (specific activity approxi­
mately 1 x 108 units per mg protein) stimu­
late proliferation of CFU-GM in a dose-de­
pendent manner and by direct action on 
MYI0+ progenitor cells. Aggregates that 
had developed by day 7 were uniformly 
small, rarely exceeding 20-30 cells even at 
high concentrations of G-CSF, and purely 
granulocytic, containing mature neutrophils 
as demonstrated by esterase stains. No sig­
nificant differences in either number or size 
of aggregates were observed when equiva­
lent concentrations of recombinant and 
highly purified G-CSF were compared (data 
not shown), indicating that lack of glycosy­
lation of the recombinant material does not 
adversely affect its biological activity. CFU­
GM scored after 14 days were predomi­
nantly granulocytic (64%-75%); in addi­
tion, the formation of a small number of 
mixed granulocyte/macrophage colonies 
(4% at 250 U/ml, 10% at 2000 U/m!) and 
macrophage clusters of 6-20 cells (20%-
30% of total aggregates in several experi-

Table 1. Stimulation by rhG-CSF of d7 and d14 
CFU-GM from MY10+ bone marrow cells 
cultured in triplicate at 1000 cells/ml. Values 
(clusters: 4-50 cells; colonies: more than 50 cells) 
are expressed as mean ± standard deviation 
calculated for 1 x 105 cells 

rhG- CFU-GM (colonies/clusters) 
CSF 
U/ml Day 7 Day 14 

o 0/0 
100 0/2780 ± 490 
250 0/4890 ± 570 
500 0/5130 ± 176 

2000 0/5380 ± 550 

0/0 
1600 ± 400/1600 ± 330 
2660 ± 530/1400 ± 70 
2900 ± 70/1130 ± 130 
3470 ± 130/1130 ± 200 

ments) was stimulated. In contrast, growth 
of eosinophil colonies was not supported, 
even by high concentrations of G-CSF, as 
judged by Congo red stains of agar cultures. 
These data are consistent with results ob­
tained previously with murine G-CSF [5]. 

The capacity of rG-CSF to stimulate 
BFU-E and CFU-GEMM was examined in 
a highly sensitive BPA assay, using se­
quentially purified progenitor populations 
(LDAC- and sorted HLA-DR+, MY10+ 
blasts) as target cells. As shown in Fig. 1 for 
MY10+ cells, 50-2000 U/ml rG-CSF failed 
to stimulate CFU-GEMM or increase BFU­
E formation above background levels. Iden­
tical results were obtained in numerous ex­
periments irrespective of the target popula­
tion used. Comparison of highly purified 
and recombinant G-CSF at both 1000 and 
5000 U /ml confirmed that the absence of 
BFU-E- and CFU-GEMM-stimulating ac­
tivity of rG-CSF is not a consequence of the 
lack of glycosylation. Readdition of autolo­
gous, unstimulated OKT4- and OKTS-posi­
tive lymphocytes, isolated by cell sorting 
with 98% purity, to cultures of MYlO+ 
cells did not augment colony formation in ei­
ther the absence or the presence of G-CSF 
(data not shown). These results are at 
variance with earlier studies [1-3], which em­
ployed target populations depleted of acces­
sory cells by plastic adherence and E-roset­
ting, techniques that do not facilitate the de­
gree of progenitor enrichment and accessory 
cell depletion achieved by the immunologi­
cal techniques used in this study. It is con­
ceivable that the stimulation of erythroid 
and multilineage colonies observed in those 
reports was mediated by an as yet unidenti­
fied accessory cell. 

To assess whether or not G-CSF is able to 
facilitate the survival and or initial prolifer­
ation of BFU-E and CFU-GEMM, delayed 
addition experiments were carried out 
(Table 2). The almost complete loss of BPA­
responsive BFU-E and of CFU-GEMM 
caused by delaying the addition of BPA till 
day 4 of culture is not abrogated by the con­
tinuous presence of G-CSF. This result dif­
fers slightly from that obtained with murine 
fetal liver cells, where G-CSF appeared to 
stimulate the initial proliferation of a sub­
popUlation of multipotential and erythroid 
precursors [5]. 

245 



STINULUS 

CPO only. day 0 __ 3450 

CPO only. day 3 ~ 250 

.CFY-SENN 

~8FY-E" 

rhS-CSF 500 u/Ill ~ 150 

rhS-CSF 2000 u/Ill ~ 200 

PP-alpha ffO U/lIll~ 3200 

5637CN 5K1~5550 

PHA-LCM 7.5K I 5850 

o 1500 3000 4500 
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6000 

Fig.t. Growth of BFU-E and CFU-GEMM in 
methylcellulose cultures ofMY10+ cells cultured 
in duplicate at 1000 cells/ml. Comparison of rG­
CSF with 5637 CM, PHA-LCM and PP-alpha 

(Pluripoietin-cx), a GM-CSF-like activity purified 
from the bladder carcinoma line 5637 [20]. Re­
combinant EPO was added on day 3 of culture un­
less otherwise stated 

Table 2. Delayed addition of burst-promoting activity (BPA) to methylcellulose cultures of enriched 
progenitor populations in the presence or absence of rhG-CSF. LDAC-, HLA-DR+, and MY10+ 
cells were plated at 1 x 104 ,2.5 X 103

, and 1 x 103 cells/ml respectively. 5637 CM was used as a source 
ofBPA 

Stimulus 

EPO rhG-CSF BPA 

Day of addition 

3 
3 0 
3 0 
3 4 
3 0 0 

In conclusion, it appears that the direct 
action of human G-CSF is restricted primar­
ily to the granulocytic lineage, in which it 
supports the proliferation and differenti­
ation of committed progenitors (d7 and d14 
CFU-GM) and stimulates end-stage cells as 
determined by antibody-dependent cell-me­
diated cytotoxicity and induction of chemo­
tactic peptide binding [2, 20]. 
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Bone marrow fraction 

LDAC- HLA-DR+ MY10+ 

Number of BFU-E/CFU-GEMM/l05 cells 

90/ 0 40/ 0 350/ 0 
700/10 1700/120 4800/420 
160/ 0 200/ 0 200/ 0 
210/ 0 180/ 0 300/ 0 
140/ 0 0/ 0 400/ 0 
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