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A. Introduction 

As lymphocytes differentiate, the expres­
sion of certain cell surface polypeptides can 
change both quantitatively and q~ali.ta­
tively. A classic example of quantItative 
variation is murine Thy-l which decreases 
over five- to tenfold in density as thy­
mocytes differentiate into mature T cells. 
What functions these quantitative vari­
ations may play for the most part is not 
known. However, variations in Ia antigen 
densities can profoundly affect immune re­
sponsiveness, and this has been postulated 
to playa central role in immunoregulation 
[12]. During lymphoid cell activation, the 
amount of certain antigens such as CD3 
(D) may decrease dramatically [21], while 
densities of other antigens may increase 
[15]. It has been suggested that IL-2 re­
ceptors increase in density after T cell acti­
vation as a means of promoting autocrine­
induced proliferation [11]. 

A standard method for analyzing normal 
and malignant lymphoid cell phenotypes is 
to detect the presence or absence of various 
cell surface antigens with monoclonal anti­
bodies (MoAb) and immunofluorescent or 
immunoperoxidase methods. A model put 
forward by Greaves at the last Wilsede 
meeting [7] and by others is that lymphoid 
malignancies suffer "maturational arrest" 
and that the heterogeneity observed for 
lymphoid leukemias and lymphomas re-
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flects different stages of normal differen­
tiation. The importance of considering 
quantitative as well as qualitative dif­
ferences in leukemia or lymphoma pheno­
types has been noted [6, 8J, but not uni­
formly applied. Recently, quantitative flow 
cytometry and two-color immunofluores­
cence have been used to phenotype normal 
lymphocyte populations into more discrete 
subsets [14, 16, 17]. Here we present a sum­
mary of our structural and functional 
studies of lymphocyte surface structures on 
normal and malignant Band T cell popula­
tions using quantiative two-color flow cy­
tome try. 

B. Materials and Methods 

I. Antibodies 

The MoAb to B cell-associated antigens 
used in this study have been described [2, 4, 
13]. They include 2H7 and I F5 specific for 
the pan-B cell antigen Bp32; 2C3 anti-fl 
chain; d-TA4-1 anti-o chain; HBIOa anti­
HLA-DR; H616 anti-p76 B cell antigen; 
3AC5 anti-p220 pan-leukocyte antigen; 
and 24.1 anti-pIOO, CDIO (cALLA) anti­
gen. T cell-specific MoAb described accord­
ing to the international nomenclature [1, 9] 
were G19-4 anti-Tp19-29, CD3; G3-7 anti­
Tp4l, CD7; 9.6 anti-Tp50, CDS (E re­
ceptor); 10.2 anti-Tp67, CD2; G19-2 anti­
Tp55, CD4 (T h/0; G 10-1 anti-Tp32, CD8 
(Ts/c); and 9.3 anti-Tp44. The antibodies 
were purified and conjugated with fluores­
cein (green) or phycoerythrin (PE) (red) as 
described [15, 17J. 
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II. Cell, Preparation, Staining, and Flow 
Cytometry 

Lymphoid cells were p~rified. on .Ficoll 
density gradients and staIn.ed wIth dIrectly 
conjugated MoAb as de~cnbed [5, 1.1]. ~e­
cause only directly conjugated antIbodIes 
of high affinity were used, for cell popula­
tions of relatively uniform size, fluores­
cence intensity is a good indicator of anti­
gen density. For two-color flow cytometry, 
a FACS IV with a single laser to excite fluo­
rescein or PE was used [15]. 

c. Results and Discussion 

I. Normal B Lymphocyte Populations 

The quantitative expression of certain B 
cell surface polypeptides differs in different 
lymphoid tissues. For example, both HLA­
DR and B4 antigens are expressed at high­
er densities on splenic and tonsillar B cells 
than on circulating blood B cells [19, 15]. 
The pan-B antigen Bp32 is expressed over a 
range of densities on tonsillar B cells [15]. 
Using two-color methods, we have found 
that B cells in tonsils can be classified into 
three phenotypes: Bp32brigh~ (Bp32bri) 
IgMdulltneg cells, Bp32dullIgMbnIgD- cells, 
and Bp32dullIgMbriIgD+ cells. B cells fo.und 
in the germinal center of secondary folhcles 
are Bp32 briIgMdull/neg while B cells in the 
mantle zones are Bp32dullIgMbriIgD+ [16]. 
B cells expressing Tp67 (Tl. or Lyl) are ?f 
great interest since chromc lymphocytIc 
leukemias (CLL) are Tp67+ [18] and Lyl + B 
cells are elevated in mice with lupus-like 
autoimmune disease [10]. Using the sensi­
tive two color systems, we have not been 
able definitively to identity Tp67 B cells in 
B cell-enriched fractions of cord blood, 
adult blood, spleen, tonsils, lymph nodes, 
or bone marrow. If Tp67+ B cells are pres­
ent in normal lymphoid tissues, they are in 
quite small numbers, are localized in ce.r­
tain areas, or are expressed only at certaIn 
times in development. 

II. Malignant B Cell Phenotypes 

The intensity of antigen expression on 
chronic lymphocytic leukemias (CLL) and 
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a variety of non-Hodgkin's lymphomas was 
evaluated [15]. As summarized in Table 1, 
for CLL antigen, densities for Bp32, sIgM, 
and HLA-DR vary over roughly a 10- to 
25-fold range. The same markers generally 
are expressed at higher density and vary 
over a 100- to 500-fold range for the more 
heterogeneous non-Hodgkin's lymphomas. 
The Tp67 antigen in contrast is expressed at 
higher density on CLL than lymphomas. 
Five of the Bp32+sIgM+ samples (16%) ex­
pressed significant but low levels (> 2.0) of 
the Tp50 Er marker. In our screen of nor­
mal adult lymphoid tissues, we did detect 
either Er+ or Tp67+ B cells. Using two-color 
analyses with Tp67, Bp32, or HLA-DR as 
markers, at least three distinct phenotypes 
for CLL were detectable [15]. 

A small number of non-T, non-B ALL 
were screened using two-color IF (Figs. 1 
and 2). The most informative combination 
for phemotyping cALLA - ALL was 
measuring p220 levels versus HLA-DR ex­
pression (Fig. 1); . three ~l?-enotypes were 
evident: p220bnDRdull n (ALL 1);. 
p220briDRbn (ALL 2); and p220-DRbn 

(ALL 3). The cALLA + ALL generally had 
higher levels of HLA-DR and lower levels 
of p220 than the cALLA-ALL (Table I!. 
Using green-anti-cALLA versus red-antI­
Bp32 or HLA-DR, several phenotyp~s were 
detected (Fig. 2). Patient 4's leukemIC cells 
were cALLA dullBp32dull/neg and HLA-
DRbri; patients 5 and 6 both had 
cALLA bnBp32dull/neg leukemic cells .. 
However, ALL 5 cells were uniformly DRbn 

while ALL 6 cells displayed a range of DR 
densities. 

These results show that monoclonal 
leukemias can be quite heterogeneous in 
the patterns of surface antigen intensit~es 
they display. Apparently, phenotypes In­
dicative of more than one stage of dIfferen­
tiation can be expressed. Two major tasks 
remain: (a) to relate malignant phenotype 
to normal lymphoid cell phenotypes - thus 
far we have not been able to identify the 
normal cell counterparts of many of our 
malignant cell phenotypes;. and (b) to 
classity a battery of leukemIas and lym­
phomas based on two-color phenotypes 
and assess the prognostic value of the 
classifica tion. 



Fig. 1. Quantitative two-color phenotypes of 
cALLA - non-T, non-B acute lymphocytic 
leukemias. Data of 25000 cells plotted cell num­
ber (vertical axis) and log green fluorescence (an­
ti-p220) versus log red fluorescence (anti-DR) 
(upper left). About every 4-5 dots represents a 
doubli~g offluo-rescence. ALL 1, a leukemia with 
p220 bnDR d~ll/bn ~ells; ALL 2, a second leukemia 
with p220 bnDR ~n cells; ALL 3, a third leukemia 
with p220-DR bn cells 

III. Normal T Cells 

Two-color cytofluorographic methods have 
also been used to phenotype new T cell 
populations. We have conjugated a large 
panel of MoAb with FITC or PE and tested 
a variety of two-color combinations. The 
expression of so-called pan-T cell antigens 
on CD4+ (T4) T helper/inducer (ThIV cells, 

Green anti-p220 vs. Red (] n i = H -DR 

ALL2 

ALL 

ALL 3 

Fig. 2. Quantitative two-color 
phenotypes of cALLA + non-T, 
non-B acute lymphocytic leukemi­
as. Left column, green cALLA ver­
sus red-Bp32; right column, green 
cALLA versus red-HLA-DR. Each 
row is a different leukemia. ALL 4, 
cALLA dul~p32 dull/nelD R dull/bri 
cells; ALL 5, cALLA briBp32 dull/neg 
DR bncells; ALL 6, cALLA bri 
Bp32 dull/negDR neg/bn cells 
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Table 1. Relative antigen expression on Band T cell malignancies 

Condition No. Mean relative fluorescence intensity a (range) using Ab to: 

Bp32 SIgM DR cALLA p220 Tp67 Tp50 Tp19 Tp41 Tp55 Tp32 
(COlO) (C05) (CO2) (CD3) (CD7) (C04) (CD8) 

CLL 15 19.1 1.8 81.3 18.5 2.8 
(3-49) (1-6) (8-209) (2-42) (1-26) 

Non-Hodgkin's 16 80.6 65.0 243.3 5.9 1.5 
lymphomas (11-189) (1-451) (19-1154) (1-23) (1-4) 

ALL 
Non-T, B cALLA- 4 1.0 1.0 19.5 1.4 32.6 

(8-37) (1-2) (2-63) 
Non-T, B cALLA + 5 2.6 1.6 103.3 54.4 11.5 

(1-5) (1-2) (36-215) (3-112) (3-22) 

T 10 1.1 1.3 8.4 24.1 4.6 98.7 7.3 10.2 
(1-2)b (1-17) (1-184) (1-22) (2-239) (1-31) (1-56) 

Normal PBL-B 275.3 15.1 74.5 1.3 1.0 
3 (246-314) (5-20) (54-100) (1-2) 

T 1.4 1.0 1.2 67 47 93 49 51 179 

a fluorescence intensity is a ratio of brightness of peak of malignant cells/brightness of peak of negative control Ab-stained cells (autofluorescence). For all 
experiments, direct IF was used and measured on a F ACS IV cell sorter 

bOne Er+sample, DR= 177 



CD8+ (T8) T cyto-toxic/suppressor (Ts/c) 
cells, and Fc receptor+ (T y) T cells on nor­
mal periphery was examined [17]. The pan­
T cell antigens split into four groups: (a) 
markers expressed on all CD4 + cells and on 
CD8 bri cells, but not on CD8duil or T y cells -
CD3 (13), CD5 (Tp67), and 9.3 (Tp44 1); 
(b) markers expressed on all CD4 + and 
CD8+ cells, but not all Ty cells - CD2 (Er); 
( c) markers expressed on all CD8 + and Tt 
cells, but not all CD4 + cells - CD7; and (e) 
markers expressed on all T cell subsets -
Tp90. The Th/i' Tc/s' and Ty cell subsets 
could be further divided into distinct sub­
populations with appropriate two-color 
combinations (Rose et al., in preparation). 

IV. T Cell Malignancies 

A panel of ten T cell ALL displayed a range 
of antigen intensities (Table 1). As reflected 
by our studies with normal T cells, the most 
common or widely distributed marker in 
this panel was the CD7 antigen; CD7 also 
was consistently expressed at high densi­
ties, while many of the other antigens were 
expressed at lower levels than detected on 
normal T cells. 

V. Functions of Bp32 and Tp32 
Polypeptides 

The functions of most Band T cell surface 
antigens are not known; insights into the 
functions of these molecules may assist in 
helping us understand leukemogenesis bet­
ter and may help us design new approaches 
for diagnosis and therapy. Recently, we 
have focused on the functions of the B cell­
specific polypeptide Bp32 and the Ts/c-spe­
cific polypeptide Tp32, and not solely be­
cause we like the number 32 [16]. Mono­
clonal antibodies to the Bp32 antigen, 
either alone or in conjunction with T cell 
factors, stimulate B cells to proliferate. The 
MoAb act directly on B cells and do not ap­
pear to require accessory cells. Anti-I.! 
blocks this effect, suggesting that Bp32 may 
have to interact with the Ig receptor to acti­
vate B cells. Thus, like the CD3 (T3) mol­
ecule for T cells, the Bp32 structure plays a 
role in B cell activation. 

The Tp32 molecule is thought to play 
some role in class I recognition by Tc/s cells 
[20]. Recently, we have demonstrated for 
the first time that Tp32 molecules physi­
cally associate with the class I T cell differ­
entiation antigen Thy,p45 (CDl) on thy­
mocytes [16]. Tp32 appears to be an 
alternative structure for ,82-microglobulin 
(,82M) and class I molecules since 132M is 
not associated with the Tp32-Thy,p45 com­
plex. We believe that Tp32 associates with 
different class I molecules during the 
course of differentiation and selection I edu­
cation of cortical thymocytes into mature T 
cells. At each stage, it is possible that Tp32 
plays an important role in allowing or pro­
moting class I recognition. 
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