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Regulin, a Cytoskeleton-Associated Protein Affecting
Phosphorylation—Dephosphorylation *

G.Kramer, E. Wollny, S. Fullilove, J. Tipper, W.Kudlicki, and B. Hardesty

Translational regulation at the molecular
level has been studied intensively with
components from mammalian reticulo-
cytes. Since the discovery of translational
control by  phosphorylation—dephos-
phorylation of initiation factor elF-2 [1-3]
and possibly 40 S ribosomal subunits [4-7],
relevant protein kinases and recently coun-
teracting phosphatases have become targets
of research. The extent of phosphorylation
of a given protein depends on a dynamic
equilibrium between the activities of the
protein kinase and phosphatase. This equi-
librium reaction is schematically depicted
for elF-2 in Fig. 1.

Potentially, the equilibrium can be shift-
ed by activation or inhibition of either the
kinase or the phosphatase. Regulation of
the protein kinases and phosphatases in-
volved in translational control is poorly
understood. It appears that both types of
enzyme occur in latent forms in vivo. The
mechanisms of activation of the heme-reg-
ulated elF-2a kinase in reticulocytes or of
the double-stranded RNA-dependent elF-
2a kinase in interferon-sensitive cells are
still unclear. Almost nothing is known
about the inactive form and occurrence of
protein phosphatases in intact cells. In vi-
tro, phosphatases generally can be activat-
ed by high, nonphysiologic concentrations
of Mn?* [8—12], by protease treatment [13,
14], or by denaturing agents [15].
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We have partially purified and charac-
terized a 76 000 daltons phosphatase from
reticulocytes that counteracted the heme-
controlled elF-2a kinase [11], and recently
isolated to homogeneity a 56 000 daltons,
Mn?*-dependent phosphatase that is most
active with phosphorylated 40 S ribosomal
subunits [12]. Using monoclonal anti-
bodies, we have identified a 230 000 dal-
tons, protease-sensitive protein, which we
have named regulin, that stimulates the ac-
tivity of this phosphatase [16]. Figure 2
shows that regulin extracted from the mem-
brane fraction with spectrin is distinct from
the 220000 and 240000 daltons a- and
B-spectrin  subunits. Regulin can be
separated from spectrin by ion exchange
chromatography in urea, followed by anti-
body affinity chromatography using mono-
clonal antibodies against the regulatory
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Fig. 1. Phosphorylation—dephosphorylation  of
elF-2



Fig. 2a,b. Separation of regulin from
spectrin. Peptides of a crude spectrin
preparation extracted from the re-
ticulocyte membrane (lane 1) or frac-
tions derived from it (lanes 2—4) were
separated on 15% polyacrylamide gels
in SDS and either stained with Coo-
massie Blue (a) or transferred elec-
trophoretically to nitrocellulose, then
incubated with monoclonal anti-
regulin antibodies (b) as described [16].
Antigen peptides were visualized by
dianisidine (cf. [17]). The spectrin
preparation was made 6 M in urea,
then loaded on a DEAE—cellulose
column equilibrated in 40 mM Tris-
HCI (pH 7.5), 25 mM KCI, 5 mM
p-mercaptoethanol, and 6 M urea.
The wash fraction (Jane 2) contained
mostly hemoglobin. Then proteins
were eluted stepwise with the same
solution, but containing 100 mM (lane
3) and 300 mM KCl (lane 4). Lane 3
contains regulin, /ane 4 mostly spec-
trin. Lane 3a (100 mM KCI fraction)
is from an identical preparation from
which protease inhibitors were omit-
ted
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Fig. 3. Stimulation of phosphatase
activity by regulin. The 56 000 dal-
tons phosphatase was isolated and
its enzymatic activity determined
as described [12]. Regulin (full cir-
cles) or spectrin (open circles) were
added in amounts indicated on the
1 abscissa
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protein. Regulin peptides are identified af-
ter separation of peptides by SDS—gel elec-
trophoresis followed by Western blotting
and ELISA with monoclonal antibodies (cf.
[16]). The antigen—antibody complex is de-
tected by a second antibody to which

peroxidase is linked using dianisidine and
H,0, as substrate (cf. [17]). Regulin is a
230 000 daltons peptide that is very sensi-
tive to proteolysis. If the cells are lysed in
the absence of protease inhibitors, regulin
is quickly degraded (Fig. 2B, lane 3a). It is
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Fig. 4. Model for the association of regulin with
spectrin in the red cell cytoskeleton. Illustration
of the membrane-associated proteins is modified
from [19]

not established whether or not this proteo-
lytic processing of regulin has a physiologic
function such as activation of protein
kinase or phosphatase by extracellular
stimuli that are transmitted through mem-
brane receptors.

After reticulocytes are lysed and fraction-
ated, regulin and its degradation products
are found in part in the postribosomal
supernatant and appear to copurify
through most chromatographic steps with
the phosphoprotein phosphatase and the
heme-controlled eIF-2a kinase activities.
Highly purified regulin — but not spectrin —
stimulates the enzymatic activity of the ho-
mogeneous 56 000 daltons phosphatase as
shown in Fig. 3.

Based on the results here and elswhere
[12, 16], we suggest the model depicted in
Fig. 4, indicating membrane—cytoskeleton
interaction in red cells. It shows regulin as-
sociated with spectrin in the cytoskeleton
and functioning to organize and modulate
the activity of heme-regulated elF-2a
kinase and the protein phosphatase in-
volved in translational control. Evidence
has been presented which indicates that
mRNA and polysomes active in protein
synthesis also are bound to subcellular cy-
toskeletal structures, as reviewed recently
by Trachsel and co-workers [18]. Thus, it
appears likely that these elements for pro-
tein synthesis, as well as the factors that
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control their activity, are also organized on
the cytoskeleton in intact cells.
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